
Password Cracking
Software and Hardware Comparison

Seminar Paper

Ausgewählte Kapitel der IT-Security

Submitted by:

Student Identification:

Submission Date:
08.01.2020

Abstract

The dilemma with recovering a password is the uncertainty about the amount of time to
conclude. Choosing the wrong hardware or software can drastically affect the time required
to complete the process and, thus, the feasibility of the project. This paper deals with the
fundamental questions, which setup should be used when testing authentication mechanisms
and passwords. For this purpose, the renowned programs Hashcat and John the Ripper have
been deployed on various platforms, ranging from embedded devices and Smartphones over
Laptops and Desktops to Servers, to gather benchmarks, which are subsequently processed
and compared. In this case, the factors operating system, testing tool, and version as well as
platform and processor play a determining role in deciding which combination is best suited
for a specific situation.

Even though, the results show that generally, Graphics Processing Unit calculations are
much faster than Central Processing Unit calculations. It can also be said that Hashcat,
which specializes in Graphics Processing Units, is not very easy to get it up and running on
any processor, whereas John the Ripper runs on almost every Central Processing Unit and
Operating System. Even though some hardware has proven to be effective by the community,
no general statement shall be made, and it should always be decided on a case-by-case basis,
which setup suites best for a distinct purpose or any existing hardware.

Keywords: Password cracking, Password Attacks, Hashcat, John the Ripper, Benchmark-
ing, Penetration Testing Tools

i

Abbreviations

2FA Two-Factor Authentification
ADB Android Debug Bridge
aka also known as
APT Advanced Package Tool
ARM Advanced RISC Machine
AP Access Point
AVX Advanced Vector Extensions
BF Brute-Force
CPU Central Processing Unit
CSS Cascading Style Sheet
DB Database
DSP Digital Signal Processor
eg exempli gratia (for the sake of an example)
ERD Entity Relation Diagram
FMS Fluhrer, Mantin and Shamir
FPGA Field Programmable Gate Array
GPU Graphical Processing Unit
GUI Graphical User Interface
HTML HyperText Markup Language
h/s Hash calculated per Second
John John the Ripper
JtR John the Ripper
MFA Multi-Factor Authentification
MFR Manufacturer
MIPS Microprocessor without Interlocked Pipelined Stages
OMP OpenMP Threads
OpenCL Open Computing Language
PHP Hypertext PreProcessor
PSK Pre-Shared Key
PTW Pychkine-Tews-Weinmann
RISC Reduced Instruction Set Computer
SQL Standardized Query Language
SSE Streaming SIMD Extensions
WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access

ii

Contents

1. Introduction 1
1.1. Problem Statement . 1
1.2. Outline . 1

2. Background 2
2.1. Password Cracking . 2
2.2. Password Attacks . 3
2.3. John the Ripper . 5
2.4. Hashcat . 6
2.5. Miscellaneous Tools . 7

3. Benchmarking 9
3.1. John the Ripper . 9
3.2. Hashcat . 9

4. Implementation 10
4.1. Parser . 10
4.2. Plotter . 11
4.3. Website . 11

5. Results 12
5.1. Statistics . 13

6. Analysis 15

7. Conclusion 16
7.1. Conclusion . 16
7.2. Acknowlegment . 16

A. Appendix 17

List of Tables and Figures 18
Listings . 19
Literature . 20

B. Graphs 21

iii

1. Introduction
Password cracking or the more general expression of Key recovery describes the process that
is used to find a key to a known digital identity and is usually associated with high computing
power requirements in order to succeed in a realistic amount of time. Since not everybody
has a large budget to be able to afford the most powerful hardware, the hardware in their
possession must be used most efficiently. Be it only in the context of scientific work or small
projects to analyze the security of a system or mechanism, this work serves as a guide for
the average end-user with limited budget who focus on owned hardware to avoid further
purchases and maximize the otherwise ineffectively or unused computing power.

1.1. Problem Statement

It is generally claimed that Hashcat is more performant than John the Ripper (john) and
that Graphical Processing Units (GPU) can calculate more hashes per second than Central
Processing Units (CPU). These statements are critically examined here and analyzed on a
case-by-case basis to determine whether they apply to all cases and in which they do not.
In order to be able to make statements, case data is required. This case data includes the
type of tool and version, information about the operating system (OS), the used hardware
platform as a whole as well as on single processors, and the comparison between pre-compiled
and self-compiled Hashcat and John binaries. These case data were collected in Chapter 5
and analysed in Chapter 6.

1.2. Outline

This document gives a brief overview of common password attack techniques and tools but
does not provide information about optimal or detailed usage. Here mainly benchmarks were
performed to analyze the performance of the tools John the Ripper and Hashcat on given
hardware. More specific processors supported by Hashcat, such as Digital Signal Processors
(DSP) or Field Programmable Gate Array (FPGA) were not investigated, but are supported.
For information on the execution of specific attacks, refer to the developers’ websites, which
provide great documentation, examples, and additional help. For further guidance consider
for instance the HASH CRACK: Password Cracking Manual [B1]. Besides, information
about most penetration testing tools from various niches of the security and forensics fields
can always be obtained from the Kali Linux knowledge-base [W2]. This site aims to list them
all and provide a quick reference to these tools.

1

2. Background
This chapter provides the required knowledge in the field of key recovery. It gives the reader
a brief introduction to password cracking in general. It also introduces common password
attacks and cracking tools. The chapter then goes into more detail about the popular tools
John the Ripper and Hashcat, which are examined in depth in this case study.

2.1. Password Cracking

Password cracking or Password recovery is used in IT-Security and Cryptanalysis to recover
passwords or digital keys in general, which are the most critical part of a digital identity that
is associated with a specific service. To acquire such digital keys, common Password Attacks
from Section [2.2] are employed to infer the corresponding key. Other techniques, like social
engineering or dumpster diving, are also possible in some scenarios. Keys are unspaced sets
of characters that allow to authenticate against a given security mechanism in order to gain
access to data, programs, or secured systems. However, these techniques could also be used
to gain unauthorized access to a remote system.

Once a key has been recovered, it can subsequently be used to undermine a digital authenti-
cation process, which provides privacy protection by mitigating risks of unauthorized access
to individuals’ information. In other words, a key must be kept secret by a claimant, hu-
manoid or not, while the verifier confirms the claimant’s identity. Additionally, choosing a
strong password is crucial to prevent cracking and render recovery impossible. Furthermore,
a Multi-factor (MFA) or Two-factor authentication (2FA) is recommended, since a claimant
has to provide more factors to the verifier than just one key, which are something the claimant
knows (knowledge), has (possession) or is (inherence), whereby a password recovery becomes
pointless without knowing of the factors possession or inherence. [P1]

It should be noted that keys can be available in various forms. On the one hand, clear-text
passwords can be transmitted over the network or stored locally, which then only needs to
be intercepted or found. On the other hand, passwords can also appear in hashed or obfus-
cated forms. The latter differs in that the obfuscated password is brought back to its original
form with the appropriate reverse algorithm. In contrast, a hashed password benefits from
the one-way properties of the algorithm used and can only be concluded by hashing guessed
password repeatedly and comparing them to the target hash until the original password or
any rare hash collision has been found. In the following, only hashed keys are treated.

In order to be able to conclude on the original keys, high computing power is needed. Cal-
culations can be done either by using CPUs with a small number of cores that have been
developed for the sequential execution of processes. Alternatively, by using GPUs, which
have a very high number of cores working in parallel, making them theoretically ideal for
password cracking. The time to crack a password depends on its entropy, measured by the
bit strength of a password and as well as the password length forming the target keyspace.

2

Chapter 2. Background

2.2. Password Attacks

Password attacks can be performed in two ways. On the one hand, in the case of online
attacks, designated system interfaces are used to try out passwords and, on the other hand,
offline attacks in which hashed passwords were obtained via other channels and then pro-
cessed locally at any time. Online attacks are much slower because the calculations are
performed by the target, while the latency of the network link also plays an important role.
Furthermore, such attacks could be detected and prevented by the attacked systems. Exam-
ples would be attacks on SSH or any web-based login form. On the other hand, offline attacks
can no longer be detected after the hashes have been obtained and can be carried out highly
effective since only hashes are calculated and compared here, but no further communication
or processes between systems or the like are required.

As it is common in most areas of life, there is not only black and white but also the grey zone
in between. For this reason, it should be noted that there are also non-electronic attacks on
passwords, such as dumpster diving or social engineering. But also more drastic but highly
effective ways like Coercion by the government or Rubber-hose cryptanalysis (torture) can be
taken, in which the human factor as the weakest link in the chain is attacked. This work
is limited to offline attacks, and no human nor animal has been harmed during this work.
However, some tools for online attacks are listed for completeness in section 2.5.

Figure 2.1.: Cracking skulls instead of passwords
https://xkcd.com/538/ (CC BY-NC 2.5)

3

https://xkcd.com/538/

Chapter 2. Background

The following paragraphs present the most common modes used with password attacks.

Brute-force attacks try all possible passwords until the right one is found. Such password
crackers generate and hash in the worst case every possible password in the keyspace, while
none of these intermediate results are stored. Every hashed password is compared to the
target hash on the fly until a match, and thus also a valid password has been found. This
may be the original password or any rare hash collision. The success probability is given if
the target password is in the known keyspace. However, for this attack, an extremely high
computing power is needed to reach the target in a reasonable time. The Report [R1] from
IBM Security deals with Footprinting, the process of gathering information about a target
system, and brute force attacks on how to protect against these.

Dictionary attacks are a special kind of a brute force attack where the keyspace is restricted
by using a dictionary (aka. wordlist). These wordlists usually contain common passwords
grouped by specific criteria, which are then processed by crackers in sequence. The advan-
tage is that one can quickly cover the most common passwords, so that these kinds of attacks
are very effective, as many users use common weak passwords which are easy to remember.
This can easily be fought by using passwords without underlying semantics. The best-known
wordlist is the rockyou.txt, which contains 32 million passwords. Its content originates from
a data leak of the company RockYou from the year 2009, who stored their passwords unen-
crypted.

Rainbow attacks are just a more specialized form of dictionary attack, where pre-computed
hashes are stored in so-called rainbow tables. This serves as a lookup table to invert a cer-
tain hash function. This variant results in a time-memory trade-off, where the process is
faster since only comparison operations have to be performed, but this is only effective if the
rainbow-table is stored in RAM, furthermore rainbow-tables take up more space on the hard
disk than wordlists. The use of a key derivation function that uses a salt makes this attack
infeasible.

Hybrid attacks combine brute force and dictionary attack by appending or prefixing each
entry of a wordlist with all permutations of the brute force keyspace. It is a great method
if the format of a password ist known. An example would be the use of the word ’password’
combined with all numbers from 0 to 9999. This is also very useful with usernames of com-
panies using simple rules like an identifying string combined with an incrementing number.
(e.g. C1710475117)

Rule-based attacks use methods to change passwords to cover all variants. It is a very
flexible and efficient attack, but also very complicated to cover all desired cases. Ideal if the
password requirements for a system are known, since passwords shall be easy to remember
while being secure at the same time, many users use common passwords and modify them in
a way that they match the password policy. (e.g. ’P@ssw0rD’)

Syllable attacks are again a combination of brute force and dictionary attack in which all
permutations of each word within a wordlist are checked. This is used when the password is
not a real word and is often better than pure brute-forcing.

Other attacks, like Combinator, Fingerprint, Mask, Toggle-Case, Permutation, Table-
Lookup, PRINCE may be similar to the ones noted above and shall be mentioned but are
not covered in any detail here.

4

Chapter 2. Background

2.3. John the Ripper

John the Ripper acronyms for John or JtR is a popular open-source password cracker from
the Openwall developers. Historically, the main use has been to find weak UNIX passwords.
To this day, john has been evolved to be fast and rich in features. John has the ability to
recognize password hash types and supports multiple cracking modes, but it is mostly used
for dictionary-style or incremental brute-forcing attacks. It should be noted that john even
provides the ability to define custom cracking modes using a built-in C compiler. The basic
command-line is listed below.

1 john [OPTIONS] [PASSWORD - FILES]

The developers provide additional variants like a commercial John the Ripper Pro version
and Hash Suite, which is recommended when using Android or Windows, which performed
rather badly in my tests. Besides the above-mentioned programs, there is also a graphical
version of John named Johnny 1, for those who are not friends of the console, that is available
for Linux, macOS, and Windows.

Furthermore John offers some support for CUDA and OpenCL GPUs2. Whereas, CUDA is
a parallel computing platform and programming model developed by NVIDIA for general
computing on graphical processing units (GPUs). With CUDA, developers are able to dra-
matically speed up computing applications by harnessing the power of GPUs. OpenCL (Open
Computing Language), on the other hand, is a low-level API for heterogeneous computing
that runs on CUDA-powered GPUs. Using the OpenCL API, developers can launch compute
kernels written using a limited subset of the C programming language on a GPU. [W7].

Implementations exist for many UNIX-based systems such as Linux, macOS, Android, and
Solaris, as well as for Windows. But also for more exotic devices running under DOS, BeOS,
or OpenVMS. The resources are provided as pre-compiled binaries or as source code. The
latter can then be adapted as desired and compiled for a specific system. A basic version
of John can be installed using package managers such as apt, pkg, or snap. However, it is
recommended to choose the community enhanced-jumbo version, which offers support for a
variety of additional password hash types as well as non-hashes like SSH private keys, RAR
archives, or PDF files. The following listing provides the necessary steps to clone and build
latest bleeding-edge Jumbo version of John on most UNIX-based system. Source files for all
versions could also be downloaded from Openwall.net3

1 # Clone GIT repository
2 git clone git :// github .com/ magnumripper / JohnTheRipper -b bleeding - jumbo john
3 # Build
4 cd ./ john/src
5 ./ configure && make -s clean && make -sj4

Listing 2.1: John the Ripper - Clone and Build

It is also very easy to get John the Ripper to run on Android. Generic builds for ARM, x86
and MIPS processor architectures can be found on the Openwall wiki.4 A rooted device is not
needed but a place in the filesystem with write permission. This is in most cases: /data/local,

1https://openwall.info/wiki/john/johnny
2https://openwall.info/wiki/john/GPU
3https://download.openwall.net/pub/projects/john/
4https://openwall.info/wiki/john/custom-builds#Compiled-for-Android

5

https://openwall.info/wiki/john/johnny
https://openwall.info/wiki/john/GPU
https://download.openwall.net/pub/projects/john/
https://openwall.info/wiki/john/custom-builds#Compiled-for-Android

Chapter 2. Background

/data/tmp or /data/local/tmp/. Note that those folders are cleared after a restart. Termux
terminal emulation tool with its built-in package manager pkg and apt may be used to
download and install John, but this worked rather badly in this scenario.

1 Host$ adb devices # Start ADB Deamon
2 # Get Android device CPU architecture
3 Host$ adb shell getprop ro. product .cpu.abi
4 # Copy files to a writable space on the Android device
5 # ARCH must be replaced by the appropriate CPU architecture
6 Host$ adb push user /. /data/ local /tmp
7 Host$ adb push libs/ARCH/john /data/ local /tmp
8 Host$ adb shell # Start an android shell
9 # Done. Change permissions and run.

10 Android$ cd /data/ local /tmp
11 Android$ chmod +x ./* && ./ john

Listing 2.2: John the Ripper - on Android

2.4. Hashcat

Hashcat is yet another very popular cross-platform cracking tool, whose developers claim to
have developed the world’s fastest and most advanced open-source password recovery utility.
Since Hashcat version 3, the old CPU-based hashcat-legacy and GPU-based oclHashcat have
been merged. The tool allows to use all OpenCL compatible processors of the same device
in parallel and even work distributed over the network.

1 hashcat [options]...
2 hash | hashfile | hccapxfile
3 [dictionary |mask| directory]...

Hashcat supports five unique attack modes for more than 200 highly optimized hash al-
gorithms. No official numbers have been found regarding the number of supported hash
algorithms for john. According to the statistics displayed in Figure 5.1 of this work, 199 hash
algorithms were successfully tested with Hashcat and 2319 with John. Many of the algo-
rithms tested under john are combinations of algorithms. These combinations are identified
by the foreword dynamic_ and a subsequent number. Such combinations only appear in the
jumbo version and have been added by the community.

Hashcat currently supports CPUs, GPUs, and other hardware accelerators such as DSPs,
FPGAs, and co-processors in Linux, Windows, and macOS, as well as distributed password
decryption functions. Almost all of this information and much more can be found on the
Hashcat man page, which is one of the best that I have seen so far. Hashcat can be downloaded
via package manager like apt under Linux or brew on macOS. But here it is recommended
to download the source files again and build it manually. Compared to john, however, fewer
platforms are supported here. The processors available for each platform can be listed using
-I or –opencl-info. These may need the corresponding drivers for Intel, AMD, or NVIDIA to
be addressed correctly. This process will not be successful on every platform.

1 # Clone GIT repository
2 git clone https :// github .com/ hashcat / hashcat .git
3 # Build
4 cd ./ hashcat
5 make && make install

Listing 2.3: Hashcat - Clone and Build

6

Chapter 2. Background

2.5. Miscellaneous Tools

There is no black and white, and all tools have their strengths as well as their weaknesses.
Also, combinations between some are quite useful. This section consists mostly of descriptions
of the individual developers as they can best introduce themselves and as this section is only
intended to introduce further tools. Written-off paragraphs are marked with a footnote.
Here the Kali Linux knowledge-base [W2] has been referenced, which in turn refer to the
developers’ websites and Github repositories, as well as giving short usage examples. The
following examples have been selected by versatility and range of application to present
other great tools besides Hashcat and John. aircrack-ng suite to analyze and attack wireless
networks. THC-Hydra, an online login cracker and the alternative ncrack for our nmap lovers,
Medusa is be the third in line. WFuzz, the web application cracker and last but not least
RainbowCrack which uses rainbow tables to crack passwords.

2.5.1. aircrack-NG

Aircrack-ng is an 802.11 Wired Equivalent Privacy (WEP) and Wifi Protected Access pre-
shared key (WPA-PSK) cracking program that can recover keys once enough data packets
have been captured. It implements the standard Fluhrer, Mantin, and Shamir (FMS) attack
along with some optimizations like KoreK attacks, as well as the all-new Pychkine-Tews-
Weinmann (PTW) attack, thus making the attack much faster compared to other WEP
cracking tools.5

However, Aircrack-ng is much more than just a cracking program. The developers offer
a versatile application suite presented in Table [2.1] for analyzing and attacking wireless
networks. aerodump-ng even makes it possible to capture packets in a wireless network, and
then attack contained handshakes of a WPA/WPA2-PSK using Hashcat or John efficiently.

Application Description
aircrack-ng 802.11 WEP and WPA/WPA2-PSK key cracking program.
airbase-ng Aimed at attacking clients as opposed to the AP itself.
airdecap-ng Decrypt WEP/WPA/WPA2 capture files.
airdecloak-ng Remove WEP CloakingTM from a packet capture file.
airdrop-ng A rule based wireless deauthication tool.
aireplay-ng Inject and replay wireless frames.
airgraph-ng Graph wireless networks.
airmon-ng Enable and disable monitor mode on wireless interfaces.
airodump-ng Capture raw 802.11 frames.
airolib-ng Precompute WPA/WPA2 passphrases.
airserv-ng Wireless card TCP/IP server to use wit multiple applications.
airtun-ng Virtual tunnel interface creator.
packetforge-ng Create encrypted packets that can be used for injection.

Table 2.1.: Aircrack-ng Suite

5Source: https://tools.kali.org/wireless-attacks/aircrack-ng

7

https://tools.kali.org/wireless-attacks/aircrack-ng

Chapter 2. Background

2.5.2. THC Hydra

Hydra is a parallelized login cracker which supports numerous protocols to attack. It is very
fast and flexible, and new modules are easy to add. This tool makes it possible for researchers
and security consultants to show how easy it would be to gain unauthorized access to a system
remotely.6

2.5.3. ncrack

Ncrack is a high-speed network authentication cracking tool. It was designed using a modular
approach, a command-line syntax similar to Nmap, and a dynamic engine that can adapt
its behavior based on network feedback. It allows for rapid, yet reliable large-scale auditing
of multiple hosts. Ncrack’s features include a very flexible interface granting the user full
control of network operations, allowing for very sophisticated bruteforcing attacks, timing
templates for ease of use, runtime interaction similar to Nmap’s, and many more. 7

At this point should be noted that Nmap itself can be used for simple online attacks, by using
the -script parameter with the desired script like telnet-brute.nse and the corresponding values
for userdb and passwd with the additional parameter -script-args.

2.5.4. WFuzz

Wfuzz (the web fuzzer) is a tool designed for bruteforcing Web Applications, it can be used
for finding resources not linked (directories, servlets, scripts, etc.), bruteforce GET and POST
parameters for checking different kind of injections (SQL, XSS, LDAP,etc.), bruteforce Forms
parameters (User/Password), Fuzzing, etc. 8

2.5.5. RainbowCrack

Hashcat nor john are capable of performing rainbow attacks. This is were RainbowCrack
comes into the game. An alternative tool to perform rainbow attacks is Ophcrack, a free
Windows (LM and NTLM) password cracker which also provides a GUI, and WOphcrack, a
PHP based web frontend for Ophcrack.

RainbowCrack is a general propose implementation of Philippe Oechslin’s faster time-memory
trade-off technique. It crack hashes with rainbow tables. RainbowCrack uses a time-memory
tradeoff algorithm to crack hashes. A time-memory tradeoff hash cracker needs a pre-
computation stage. At the time, all plaintext/hash pairs within the selected hash algorithm,
charset, plaintext length are computed, and results are stored in files called rainbow table. It
is time-consuming to do this kind of computation. But once the one-time pre-computation
is finished, hashes stored in the table can be cracked with much better performance than a
brute force cracker. 9

6Source: https://tools.kali.org/password-attacks/hydra
7Source: https://tools.kali.org/password-attacks/ncrack
8Source: https://tools.kali.org/web-applications/wfuzz
9Source: https://tools.kali.org/password-attacks/rainbowcrack

8

https://tools.kali.org/password-attacks/hydra
https://tools.kali.org/password-attacks/ncrack
https://tools.kali.org/web-applications/wfuzz
https://tools.kali.org/password-attacks/rainbowcrack

3. Benchmarking
This case study is based on the comparison between john and hashcat in terms of performance.
In order to be able to carry out a comparison, benchmarks of various devices have been
collected. For this purpose, the integrated benchmarking functions of hashcat and john are
used. The results, together with some additional information about the device, are stored in
a database. The individual steps are explained further below. It is very important that an
idle system is used when executing the benchmarks to avoid biased results. In addition to the
benchmarks, information such as operating system, processor, and version of the password
cracker are included.

3.1. John the Ripper

John benchmarks all the enabled ciphertext format crackers with the -test flag. In order
to test a specific ciphertext, the flag –format=... must be used. The following shell script
generates all information to be processed by the parser.

1 #!/ bin/bash
2 {{ uname -a
3 } && { lscpu | grep Model ;
4 } && { cat /etc/os - release | grep PRETTY_NAME ;
5 } && { john | grep version ;
6 } && { john --test ; };
7 } 1> $(hostname)_$(date +% Y_%m%d%_H%M_%S).log

Listing 3.1: John the Ripper - Generate Benchmarking Logfile

3.2. Hashcat

The flag -b is used by Hashcat to run benchmark of selected hash-modes. In order to bench-
mark all hash-modes, the additional flag –benchmark-all is required. The shell script below
generates all necessary information processed by the parser.

1 #!/ bin/bash
2 {{ uname -a
3 } && { cat /etc/os - release | grep PRETTY_NAME ;
4 } && { hashcat -I;
5 } && { hashcat -b --benchmark -all; };
6 } 1> $(hostname)_$(date +% Y_%m%d%_H%M_%S).log;

Listing 3.2: Hashcat - Generate Benchmarking Logfile

9

4. Implementation
In order to be able to have a comparison between the employed tools, JtR (See)3.1) and
Hashcat (See 3.2) as well as hardware and operating system, a method of data visualization
has been developed, by parsing the results from the tools inherent benchmarking feature,
piping the results to a database to finally plot easy to understand charts. The individual
steps are explained further below. The Section 5.1 provides an overview of successfully
tested devices up to this date. The implementation has been made available online [W1].

4.1. Parser

The following shows an example of one record displayed by john. OMP stands for the available
OpenMP threads. STATUS Indicates whether a benchmark was successful (DONE) or faulty
(ERROR). Although a faulty benchmark will also return a result, it will be removed by the
parser in the next step. TYPE depends on the HASHMODE and is one of the following: Raw,
Short(A) and Long(B), ManySalts(A) and OnlyOneSalt(B). Where only Raw is displayed in
one line and for the other two lines. VIRTUAL as REAL represented result of the benchmarks
in h/s. Both values drift apart when the system is under load, and the real value becomes
smaller. The virtual value is, therefore, the value to be expected at no load. In any case, the
virtual value represents the performance of a thread. John first performs all the tests for one
processor and then repeats them for each additional processor.

1 Benchmarking : HASHMODE , OPTIONS ... (OMP) STATUS
2 TYPE_A : REAL , VIRTUAL
3 TYPE_B : REAL , VIRTUAL

Listing 4.1: John the Ripper - Example Benchmarking Record

Hashcat, on the other hand, tests all processors in parallel and also gives a total value (SUM).
The individual processors are called DEVICE. For each DEVICE, there is one RESULT in
h/s and some additional information. At hashcat, all HASHMODEs are provided with an ID.

1 Hashmode : ID - HASHMODE OPTIONS
2 Speed .# DEVICE_A: RESULT (TIME) @ ACCELERATION LOOPS THREADS VECTOR
3 Speed .# DEVICE_B: RESULT (TIME) @ ACCELERATION LOOPS THREADS VECTOR
4 Speed .#*.........: SUM

Listing 4.2: Hashcat - Example Benchmarking Record

The self-written parser works on these patterns to insert values into the database. Both tools
use the result of the script from Chapter 3. These contain additional information about the
system, which is handled separately by the parser. In addition, the parser takes care of any
deviation of the pattern or creeping error messages. This has been a problem for john because
it doesn’t offer such a clear pattern as Hashcat.

10

Chapter 4. Implementation

4.1.1. Database

MySQL server 5.7 has been used for the database. The Entity Relation Diagram (ERD)
below displayed in Figure 4.1 provides a simplified view of the entire database. In this simple
relation, available hashmodes are stored together with employed devices. Mode and Option
form a unique key for a Hash, as do the Device combinations of Model, OS, CPU, Tool and
its Version. Furthermore, several benchmarks can be saved per device combination and hash
mode. The attribute tool functions as a distriminator for Hashcat or John. Due to the
different HASHMODE TYPEs mentioned in 4.1 ist the actual Benchmarking realtion for
John much diffrent then those for Hashcat by storing more detailed information.

Figure 4.1.: Benchmarking - Simplified Database View

4.2. Plotter

For the creation of any graphics on the website as well as here in the appendix B, python
with the matplotlib Library have been used. The data is loaded from the database using the
MySQLdb Library. The website provides an interface for executing custom queries on the
database allowing users to plot custom graphs and can be found under https://93.177.65.
122/query.php.

4.3. Website

The website serves as a wrapper to provide all previous steps of data processing. The front-
end consists of HTML5, CSS3 and ES6 using the JQuery framework. The backend consists
of PHP7, Python3 and Mysql. phpMyAdmin has also been installed for convenient data
management. The website is provided by Apache2, and is protected from web crawlers by
simple .htacces and .htpasswd configuration and runs on a private vServer. Interested parties
can visit the website with the username ’anyone’ and the password ’campus09’.

11

https://93.177.65.122/query.php
https://93.177.65.122/query.php

5. Results
This chapter serves as a wrapper for the Table 5.1, which provides an overview of the result-
ing data of this case study. These information provides the basis for the subsequent Analysis
6 and Conclusion 7. Except for a few devices, this table includes all devices successfully
tested in the context of this seminar paper. Here, the combination of Processor, OS, and
Version composes the identifying key resulting in a total of 25 different devices and 42 unique
combinations benchmarked. The records are numbered in order to reference single combina-
tions best. The number of hash modes available varies between Hashcat and John. That is
why only descrypt and md5crypt are mentioned here because no mode is supported by all
combinations. All benchmarks are in hashes calculated per second (h/s). It is essential to
understand that these results do not allow ranking of the devices as the computing perfor-
mance depends on the hash mode and behaves not proportionally between devices. So that
some combinations may perform great at certain hash modes.

For a more versatile comparison visit the benchmarking website [W1].
Graphical representations of this case data can be found in Appendix B.

Comments

It should be noted that the records in this table have been minimized for space reasons.
Some information, like software or OS subversions, as well as cross-product type descriptions
of processors and devices, have been deliberately omitted, without losing the identifying role.
The original data set is more complex and comprehensive.

The devices TheBigK and A1707 play an important role in the following since the device
A1707, on the one hand, is the most versatile device tested in this comparison and TheBigK
is the most performant and advanced. The former is a MacBook Pro (15-inch, 2017) and
is in the middle field of the performance scale. The device as a platform offers three pro-
cessors. A CPU, as well as two different GPUs. The tests were performed on four different
operating systems. Linux, Windows, and macOS were covered. Also, several different builds
and versions of john were tested under macOS. Without forecasting, it should be said that
the results for these combinations are far apart. The latter is a self-assembled workstation.
This platform contains a Intel i9-9900K and a NVIDIA 2080ti processor, both of which are
among the strongest of their kind in the end-user area. Other interesting data sets relate to
the use of ARM-based processors. On one side the embedded devices Raspberry Pi 2b+, 3b+
and ODroid UX4 were tested and on the other side the Android flagships: Samsung S9+,
Samsung Tab S3 and Xiaomi Mi Mix 3.

12

Chapter 5. Results

5.1. Statistics

The following Figure 5.1 provides an overview of the mass of case data obtained. A de-
vice may have multiple processors. For each device, benchmarks were performed for one or
more combinations of individual processors, OS, and cracking tool version. The combination
influences the number of hashes that can be calculated. For many hash modes, there are
additional options for various applications. So the statistics table can be read as follows:
9864 benchmarks were calculated for john, which were collected from 43 combinations of 24
different devices. The benchmarks consist of 511 hash modes, which were performed with five
different options on average. It should be noted that the number of available or supported
hash modes varies greatly depending on the combination. This leads to a minimum of 5, a
maximum of 568, and an average of 230 tested hash mode options per combination. Hashcat,
on the other hand, supports mostly always the same hash mode options if the employed
processor is supported.

Figure 5.1.: Benchmarking Statistics

13

Chapter 5. Results

ID Combination Results
N Device Processor OS Version descrypt md5crypt

John the Ripper - Central Processing Units
1 TheBigK i9-9900K Windows 10 1.8.13-j. 102094000 -
2 A1707 i7-7700HQ MacOS 10.14 1.9-j. 11460000 79920
3 A1707 i7-7700HQ MacOS 10.14 1.8-AVX 34427000 -
4 A1707 i7-7700HQ MacOS 10.14 1.8-SSE 17032000 -
5 A1707 i7-7700HQ Debian 10 1.8 5403000 -
6 A1707 i7-7700HQ Windows 2019 1.8.13-j. 33288000 -
7 A1707 i7-7700HQ Windows 2016 1.8.13-j. 28494000 -
8 15cx i7-8750H Windows 10 1.8.13-j. 34841000 -
9 MB X Pro i7-8550U Windows 10 1.8.13-j. 33255000 -
10 Swift 5 i7-7500U Mint 19.1 1.8 5564000 -
11 Swift 5 i7-7500U Mint 19.1 1.9-j. 22880000 190848
12 Custom i7-6700 Windows 10 1.8-j. 39317000 -
13 A1391 i7-4770HQ Debian 10 1.8 1222000 -
14 A1391 i7-4770HQ MacOS 10.14 1.9-j. 2163000 16240
15 M83 i7-4790 Ubuntu 18.04 1.8 6057000 -
16 M83 i7-4790 Ubuntu 18.04 1.9-j. 46268000 403200
17 K75VJ i7-3630QM Kali 2019.1 1.8.13-j. 4678000 -
18 K75VJ i7-3630QM Debian 10 1.8 20545000 -
19 E5470 i5-6300U Ubuntu 16.04 1.8 4626000 -
20 Custom i5-4670S Windows 10 1.8-j. 35219000 -
21 Custom i5-3570k Windows 10 1.9-j 22137000 197204
22 Surface 3 x7-Z8700 Windows 10 1.9-j 5574000 48573
23 E13 Pentium N3540 Kali 4.18 1.8.6-j. 1601000 -
24 ES13 Celeron N3050 Kali 4.18 1.8.6-j. 1601000 -
25 DL360 G4 Xeon 2005 Debian 10 1.9-j. 2113000 18912
26 vServer QEMU Ubuntu 18.04 1.8 2412000 -
27 vServer QEMU Ubuntu 18.04 1.9-j. 2560000 21792
28 Pi 2b+ BCM2837 Kali 2019.1 1.8.13-j. 606208 -
29 Pi 3b+ BCM2837B0 Kali 2019.1 1.8.13-j. 716800 -
30 UX4 Exynos 5422 Ubuntu 18.04 1.9-j. 2465000 27881
31 S9 Exynos M3 Android 9 1.8 2913000 -
32 Tab S3 Snapd. 820 Android 9 1.8 1607000 -
33 Mi Mix 3 Snapd. 845 Android 9 1.8 1873000 -

John the Ripper - Graphics Processing Units
34 15cx GTX 1050Ti Windows 10 1.8.13-j. 79324000 -
35 MB X Pro MX150 Windows 10 1.8.13-j. - -
36 A1707 Raedon 555 MacOS 10.14 1.9-j. - -
37 A1391 Iris Pro 630 MacOS 10.14 1.9-j. - -

Hashcat - Graphics Processing Units
38 Custom GTX 770 Windows 10 v5.1.0 13266500 855300
39 A1707 Radeon Pro 555 macOS 10.14 v5.1.0 - 1087000
40 A1707 HD Graphics 630 macOS 10.14 v5.1.0 - 221000

Hashcat - Central Processing Units
41 K75VJ i7-3630QM Kali 2019.1 v5.1.0 1842900 1714
42 ES13 Celeron N3050 Kali 4.18.0 v5.1.0 0 3893

Table 5.1.: Tested Combinations. Results in h/s.

14

6. Analysis
The results from Chapter 5 contradict many of the assumptions I had made beforehand,
especially regarding the use of different software versions and operating systems resulting
in huge differences in the results. Whereby the hardware behaves as expected, and the
computing power of the processors is reflected. Note that not all observations can be derived
from the example hash types from Table 5.1, but are based on the entire [W1] data set. The
analysis is limited to the device A1707, as it is the most versatile device tested, and the
descrypt hash type. However, the observations are also applicable to other devices. And,
the corresponding entries are highlighted in the table 5.1 and are referenced below by circled
numbers N .

Starting with the results of John the Ripper using the same CPU, knowing that 3 works
best and is described with 100% performance. The results of other combinations are given
as a fraction of 3 ’s performance. When comparing operating systems, it is now fascinating
to note that the performance of 5 under Debian was only 16%, but the results of 7 on
Windows 2016 (83%) and 6 on Windows 2019 (96%). Note the small difference of 13% better
performance for the current Windows Server version. It should be noted that Windows as
a host operating system generally performs very well in many cases, while Linux performs
rather poorly. Although the best result was achieved with this device under macOS, there
are massive differences in performance depending on the version of john used, where 2 only
achieved 33%, which is the second-worst result of this test series. Although, as in 10 |11 , 26 |27
and 15|16 , using the current self-compiled jumbo version of john resulted in a performance
improvement over the otherwise used version 1.8, which is installed by default via package
manager. However, the decisive factor here was the use of the appropriate CPU command
set when compiling. Streaming SIMD Extensions 2 (SSE2) was released in 2000 with the
Pentium 4, while Advanced Vector Extensions (AVX) was optimized for newer processors,
which is also reflected in the results and represents a performance difference of 50% on the
same processor. 2 was compiled here for generic processors.

After comparing the OS and SW, the focus is now on the use of GPUs. As one can see
from the test data, the support of GPUs under John is poor and depends on hardware and
software employed. The device considered here has two different graphics cards, but only
one of them could be used in one of 6 possible combinations of OS and SW. Hashcat, on the
other hand, supports both graphics cards, but not the CPU. Unfortunately, hashcat was not
tested extensively in this study. However, Hashcat does by far not run on every hardware,
but on average, it delivers better results. Furthermore, the simultaneous use of processors is
a big advantage.

One last observation is still to be shared. 17 and 18 were both performed on the same
hardware. Both use pre-compiled versions of john. 17 uses the version shipped with Kali
Linux and 18 was installed using apt on Debian 10. From the observations seen so far, 18
should perform rather poorly, although 17 is expected to perform rather well under Kali
Linux. However, the results show a 77% gap in favor of 18 .

15

7. Conclusion
In summary, the topic of key recovery was introduced and various application areas, attack
modes and tools were briefly presented. The offline-based tools john and hashcat were exam-
ined more closely and benchmarks were established. These were then analysed as case data for
a comparison between the two tools to define which factors can influence their performance.

7.1. Conclusion

In conclusion, john and hashcat both have very different applications and are not necessarily
directly comparable. John offers a variety of additional hash types in its Community enhanced
jumbo version and is suitable for determining and cracking weak passwords. Furthermore,
the tool can run on almost any hardware. Hashcat, on the other hand, should be used when
there is strong underlying hardware and a strong password to crack. Advantageous here is
the support of graphics cards, their parallel usability and if necessary the distribution over
the network. But there are still downsides because less hashes and hardware is supported.

Furthermore, both tools have strengths and weaknesses in some hashes, like john is very strong
in cracking LM-hashes. As has been shown, it is not enough to have the strongest hardware,
it is more important to adjust the software to the hardware in order to use it optimally.
Incorrect implementation of the software can lead to extreme differences in performance. It
should be decided on a case by case basis, what the optimal platform for cracking a target
hash is, by performing benchmarks for the target hash. When using john the jumbo version
should always be used. Moreover, for john and hashcat the binaries should be self-compiled
and pre-compiled versions should be avoided.

7.2. Acknowlegment

Special thanks go to all those involved who supported me in this work. Be it by sending
benchmarks or by providing hardware.

16

A. Appendix

17

List of Tables and Figures

2.1. Aircrack-ng Suite . 7

5.1. Tested Combinations. Results in h/s. 14

B.1. John the Ripper - descrypt - Part A . 22
B.2. John the Ripper - descrypt - Part B . 23
B.3. John the Ripper - md5crypt . 24
B.4. Hashcat - md5crypt . 25
B.5. Hashcat - descrypt . 26
B.6. John the Ripper - md5cryp openCL . 27
B.7. John the Ripper - descrypt openCL . 27

18

Listings

2.1. John the Ripper - Clone and Build . 5
2.2. John the Ripper - on Android . 6
2.3. Hashcat - Clone and Build . 6

3.1. John the Ripper - Generate Benchmarking Logfile 9
3.2. Hashcat - Generate Benchmarking Logfile . 9

4.1. John the Ripper - Example Benchmarking Record 10
4.2. Hashcat - Example Benchmarking Record . 10

19

Bibliography

[W1] : John the Ripper and Hashcat benchmarkings,
htaccess: anyone campus09
https://93.177.65.122 10, 12, 15

[W2] Kali Linux: The quieter you become, the more you are able to hear
https://www.kali.org
https://tools.kali.org
Visited: 25.11.2019 1, 7

[W3] Openwall: John the Ripper password cracker,
https://www.openwall.com/john/
https://openwall.info/wiki/john/benchmarks
https://openwall.info/wiki/john/johnny
https://openwall.info/wiki/john/GPU
git://github.com/magnumripper/JohnTheRipper
Visited: 22.11.2019

[W4] Hashcat: Advanced Password Recovery,
https://hashcat.net/hashcat/
https://hashcat.net/wiki/
https://hashcat.net/wiki/doku.php?id=hashcat
https://github.com/hashcat/hashcat
Visited: 23.11.2019

[W5] Aircrack-ng: complete suite of tools to assess WiFi network security,
https://www.aircrack-ng.org/documentation.html
https://github.com/aircrack-ng/aircrack-ng

[W6] Varonis: How to Use John the Ripper,
https://www.varonis.com/blog/john-the-ripper/
Updated: 13.08.2019, Visited: 25.11.2019

[W7] NVIDIA: High Performance Computing,
https://developer.nvidia.com/opencl
https://developer.nvidia.com/cuda-zone
Visited: 25.11.2019 5

[W8] ophcrack: a free Windows password cracker,
https://ophcrack.sourceforge.io/
Visited: 25.11.2019

[R1] IBM X-Force Research: Beware of older cyber attacks,
https://www.ibm.com/downloads/cas/OAN7VKK4
IBM Security, 2016 4

[B1] Hash Crack: Password Cracking Manual.
NETMUX, 2019, ISBN: 9781793458612. 1

[P1] Special Publication 800-63: Digital Identity Guidelines.
NIST, 2017, DOI: NIST.SP.800-63-3 2

20

https://93.177.65.122
https://www.kali.org
https://tools.kali.org
https://www.openwall.com/john/
https://openwall.info/wiki/john/benchmarks
https://openwall.info/wiki/john/johnny
https://openwall.info/wiki/john/GPU
git://github.com/magnumripper/JohnTheRipper
https://hashcat.net/hashcat/
https://hashcat.net/wiki/
https://hashcat.net/wiki/doku.php?id=hashcat
https://github.com/hashcat/hashcat
https://www.aircrack-ng.org/documentation.html
https://github.com/aircrack-ng/aircrack-ng
https://www.varonis.com/blog/john-the-ripper/
https://developer.nvidia.com/opencl
https://developer.nvidia.com/cuda-zone
https://ophcrack.sourceforge.io/
https://www.ibm.com/downloads/cas/OAN7VKK4

B. Graphs

21

Appendix B. Graphs

Fi
gu

re
B
.1
.:
Jo

hn
th
e
R
ip
pe

r
-d

es
cr
yp

t
-P

ar
t
A

22

Appendix B. Graphs

Fi
gu

re
B
.2
.:
Jo

hn
th
e
R
ip
pe

r
-d

es
cr
yp

t
-P

ar
t
B

23

Appendix B. Graphs

Fi
gu

re
B
.3
.:
Jo

hn
th
e
R
ip
pe

r
-m

d5
cr
yp

t

24

Appendix B. Graphs

Figure B.4.: Hashcat - md5crypt

25

Appendix B. Graphs

Figure B.5.: Hashcat - descrypt

26

Appendix B. Graphs

Figure B.6.: John the Ripper -
md5cryp openCL

Figure B.7.: John the Ripper - de-
scrypt openCL

27

	1 Introduction
	1.1 Problem Statement
	1.2 Outline

	2 Background
	2.1 Password Cracking
	2.2 Password Attacks
	2.3 John the Ripper
	2.4 Hashcat
	2.5 Miscellaneous Tools

	3 Benchmarking
	3.1 John the Ripper
	3.2 Hashcat

	4 Implementation
	4.1 Parser
	4.2 Plotter
	4.3 Website

	5 Results
	5.1 Statistics

	6 Analysis
	7 Conclusion
	7.1 Conclusion
	7.2 Acknowlegment

	A Appendix
	List of Tables and Figures
	Listings
	Literature

	B Graphs

